If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 2x + -33 = 7 Reorder the terms: -33 + 2x + x2 = 7 Solving -33 + 2x + x2 = 7 Solving for variable 'x'. Reorder the terms: -33 + -7 + 2x + x2 = 7 + -7 Combine like terms: -33 + -7 = -40 -40 + 2x + x2 = 7 + -7 Combine like terms: 7 + -7 = 0 -40 + 2x + x2 = 0 Begin completing the square. Move the constant term to the right: Add '40' to each side of the equation. -40 + 2x + 40 + x2 = 0 + 40 Reorder the terms: -40 + 40 + 2x + x2 = 0 + 40 Combine like terms: -40 + 40 = 0 0 + 2x + x2 = 0 + 40 2x + x2 = 0 + 40 Combine like terms: 0 + 40 = 40 2x + x2 = 40 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 40 + 1 Reorder the terms: 1 + 2x + x2 = 40 + 1 Combine like terms: 40 + 1 = 41 1 + 2x + x2 = 41 Factor a perfect square on the left side: (x + 1)(x + 1) = 41 Calculate the square root of the right side: 6.403124237 Break this problem into two subproblems by setting (x + 1) equal to 6.403124237 and -6.403124237.Subproblem 1
x + 1 = 6.403124237 Simplifying x + 1 = 6.403124237 Reorder the terms: 1 + x = 6.403124237 Solving 1 + x = 6.403124237 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 6.403124237 + -1 Combine like terms: 1 + -1 = 0 0 + x = 6.403124237 + -1 x = 6.403124237 + -1 Combine like terms: 6.403124237 + -1 = 5.403124237 x = 5.403124237 Simplifying x = 5.403124237Subproblem 2
x + 1 = -6.403124237 Simplifying x + 1 = -6.403124237 Reorder the terms: 1 + x = -6.403124237 Solving 1 + x = -6.403124237 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -6.403124237 + -1 Combine like terms: 1 + -1 = 0 0 + x = -6.403124237 + -1 x = -6.403124237 + -1 Combine like terms: -6.403124237 + -1 = -7.403124237 x = -7.403124237 Simplifying x = -7.403124237Solution
The solution to the problem is based on the solutions from the subproblems. x = {5.403124237, -7.403124237}
| h+7=17 | | 1/3x-1/2x=x | | 9d-4=6d+1 | | 3(w-7)+2(3w+2)=21 | | 4x^2-3x+34=0 | | f-16=20 | | 12x-9=8x-3x | | 1/2-7/3x=11/6 | | 12x+12x+12x+12x+12x+12x=x+7+x+10+6x+9 | | 4/y=/4 | | (1/2y)-(2/3y)=-(3/4) | | 8r+13r+11r+-11r+-20r=-18 | | -5k+31=8(-2k-3) | | 11x-10=4(x+2)+10 | | 9(2k-3)=18 | | 23+8b=-4.5 | | 125-20= | | (6+2)=20 | | 15x-10x-4x=7 | | 12x^6=8x+26 | | 17h+3h-14h-5h+h=16 | | 4g+6+8g=56 | | 4/3x-2/3=0 | | 4x+21=13 | | 300=k+23 | | x^3-(1/(x^3))=14 | | 9q+q-8q=12 | | r-9=10 | | (.7*P)+(-3.3*(1-P))=-1.5 | | 7d-13=10b+10 | | 3.4=0.4j | | y+4y-3y-y=12 |